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NSCL and Department of Physics, Michigan State University, East Lansing, MI 48824-1321, 
USA 

Received 17 July 1990 

Abstract. We construct the dynamical symmetries of U(16) ,  the algebra related to the 
quantization of classical reflection asymmetric shapes constructed from A '  = Ot, 1-, 2', 3- 
multipoles. Generators, Casimir operators and their expectation values and  branching rules 
are detailed for all dynamical symmetry limits, focusing primarily on  those relevant to 
octupole deformations and vibrations. The resulting operators allow the construction of 
dynamical symmetry Hamiltonians. 

1. Introduction 

The U(16) algebra was originally proposed to describe the bosonic quantization of 
classical reflection asymmetric shapes described by A = O+, 1-, 2' and 3.- multipoles 
[ 13. The application was directed to the description of nuclei with reflection-asymmetric 
ground states. Recently, this algebra and its non-compact extension U( 15, 1) have also 
been proposed to describe bag-like properties of baryonic spectra [2]. Such interacting 
boson algebraic approaches to collective excitations have had tremendous success in 
describing many features of nuclei [3]. To date, nuclear interacting boson model studies 
have focused almost exclusively on positive-parity excitations ( A  = 0', 2 + ) .  This is 
due in part to the lack of a model to describe the interactions with negative parity 
excitations and  the correct electromagnetic transition properties observed in nuclei. 
The current interest in nuclei with stable ground-state octupole deformation has resulted 
in a flourish of experiments in the light actinides and neutron-rich rare-earths, providing 
new data on the interaction between positive- and negative-parity collective nuclear 
excitations. This has led to the emergence of interacting-boson-model Hamiltonians 
constructed from positive- ( s  and d )  and negative- ( p  and  f )  parity bosons [4,5], which 
has had some success in describing experimental data in nuclei with suspected octupole 
deformation [5-71. The success ofthis model indicates the need for a full understanding 
of the algebraic properties and  dynamical symmetries of U(16), which can result in 
tractable analysis and predictions of experimental data. 

In a previous article [8] (hereafter referred to as I ) ,  the complete algebraic lattice 
of U(16) was constructed. There we argued that only seven of the 165 dynamical 
symmetry limits of U(161, called pdf dynamical symmetry limits, are relevant to the 
study of octupole deformed shapes. Unfortunately the identification of the subalgebra 
lattice in I is only the first step in the study of predictions of the U(16) model. 
The explicit structure of the subalgebra, specifically the forms of the generators, the 
quadratic Casimir invariants and the branching rules, are of central importance to the 
study of dynamical symmetry predictions. In this article we complete the next step of 
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the analysis of U( 16): the explicit construction of the generators and quadratic Casimir 
invariants of all the subalgebras. We focus primarily on the pdf dynamical symmetry 
limits, although for completeness all algebras are constructed. With the completion of 
this step, the final step will be to detail the physical structure of the relevant symmetries 
using simple phenomenological Hamiltonians built from the Casimir operators. Elec- 
tromagnetic transition operators can then be selected from the generators of the 
dynamical symmetry algebras of the particular chain. This will be the subject of a 
separate study. 

We begin in section 2 with the introduction of the U( 16) interacting boson model. 
In section 3 the maximal subalgebras of U( 16) are constructed. In  section 4 the seven 
pdf dynamical symmetry limits, introduced in I ,  are studied. The remaining non-trivial 
subalgebras that appear in the dynamical symmetry limits of U( 16) are discussed briefly 
in section 5 ,  followed by the conclusions in section 6. As is now standard in interacting 
boson model literature, we refer only to the classical Lie algebras with the large symbols 
U ( W ,  O ( W ,  S p ( W  and G , .  

2. The spdf IBM and its generators 

The spdf I B M  is generated by boson creation and annihilation operators with J" = O', 
1-, 2+, 3-. Their creation (annihilation) operators are denoted by si (s ) ,  p i  ( p , ) ,  d ;  
( d , )  and f; (f,), respectively, where p is the magnetic projection ( p  = -1,. . . , I ) .  
Occasionally, we use the generic operators b,,, and b;, with 1 = 0, 1 ,2 ,3 .  It is well 
known that while the creation operators transform as spherical tensors, the annihilation 
operators do  not. This leads to a redefinition of annihilation operators that do transform 
as spherical tensors: 6/,, = (-l) '+pb,,-u. The generators of the Lie algebra are then 
constructed from the Racah tensors: 

Occasionally it is convenient to construct subalgebras from pseudo-spin realizations 
of U(16), using double tensors of the form [6] 

x d ( 2 K , +  1)(2K,+1)(2K,+1)(2K,+ 1)G;(L,L2) (2) 

where P( L ,  , L,) is an arbitrary phase. This type of realization of U(  16) is also relevant 
in the study of Bose-Fermi symmetries in odd-odd nuclei. Particularly, U( 16) arises 
as the symmetry group when two quasi-particles corresponding to neutron and proton 
degrees of freedom are given j =: configurations [ 9 ] .  Upon constructing generators 
that mix the protons and neutrons, the U( 16) algebra is obtained as a maximal symmetry. 
The subalgebra U ( 4 ) 0 U ( 4 )  then emerges as a natural decomposition of U(16) into 
separate proton and neutron U(4) subalgebras, one for each j = 5 configuration. The 
similarity in the algebraic structure is related to the fact that bosons with A =0,  1, 2 
and 3 can be expressed as coupled fermions, each with j = $ .  In  this respect, the 
algebraic lattice of U(  16) that is detailed in this article is relevant to such Bose-Fermi 
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models. The Racah tensors satisfy the commutation relations 

[ GF '( I , / , )  I G$ "( 1 3 4 )  1 
= J ( 2 K  + 1)(2K'+ l)(KQK'Q'IK"Q") 

K ".Q" 

Here the symbol with the curly brackets is the usual 6-J symbol found in [lo]. The 
physical angular momentum algebra OPdf(3) is generated by 

(4) 

and must appear in every subalgebra chain. The general chains are of the form 
Uspd,-( 16) 2 G 2 G' . . . 2 OPd,-(3). Here G and  G' are intermediate subalgebras. The O(2) 
subalgebra is not important in our constructions, and since it can be added trivially 
to every chain, we omit it. 

i ' l !  M - - &[ p'@] + m[ d'd] :'+ 28[f'?] $' 

3. Maximal subalgebras of UsPdf(16) 

In this section we construct the maximal subalgebras of Uspdf(16), listed in table 1, 
and  branching rules. The simplest subalgebras are the maximal regular subalgebras, 
which correspond to partitions of the four types of bosons into separate subalgebras 
[8, 11, 121. The less trivial S-subalgebras require pseudospin realizations of Uspdf(16) 
that better reflect the dynamical symmetry. In this section we refer to the generators 
listed in table 2. 

Table 1. Maximal simple and  non-simple regular a n d  S-subalgebras of the L\pdr(16) 
interacting boson model which contain the physical angular momentum. 

Model Dynamical symmetr) Type of embedding 
~~~~~~ 

S-subalgebras: 
(Simple) 
(Spinor,  simple) 

(Non-simple)  
(Non-simple)  

Regular subalgebras:  
(Simple)  

(Non-simple)  
(Non-simple)  
(Non-simple)  
( Non-simple) 
(Non-simple)  
( Non-simple) 
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Table 2. Generators and quadratic invariants of selected maximal subalgebras of U,,,,( 16). 

3.1. Regular subalgebras 

The simple and non-simple regular subalgebras are formed from different groupings 
of the four types of bosons. There are seven such maximal subalgebras: Updf(15), 
Usdf(13)@ up(3) ,  udr(12)@ u,p(4), u,pf(l I)@ ud(5), Upf(10)@ usd(6), U,pd(g)@ uf(7), 
Us,-(8)@Upd(8). The generators of each of these algebras are all combinations of 
operators [b;&'J$), where j and k range over the bosons indicated in the subscripts 
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of the algebras. The Casimir operators and  the branching rules for these algebras are 
summarized in the appendix. 

3.2. The OYpdf(16) subalgebra 

The generators and quadratic Casimir invariants of Os,,,( 16) are given by the construc- 
tions in the appendix. Choosing the phase convention (A.3) (used throughout the 
article), the 120 generators are: [f's+ s'?]:', [p'fi]'" M ,  [d'd]('x3) M ,  [ f ' f ] ' i , 3 3 5 )  ,M 9 [ P ' S +  

(-l)Ld'f]E,. .36'.  The quadratic Casimir operator has the form 

s'fi](h), [dTS+Std]ih), [ d ' f i + ( - l ) L p ' d ] " . 2 . "  [ f f i  - (-  1 ) L p  (2.3.41 M and [f'd+ 
M ,  

1.i 1. 

622,0(161=~[fi,0t(fi~itor+14)-P' .PI ( 5 )  
A i  

where P' = --si. s' - p i  * p i  + d ' .  d' -f' ef'. The expectation value in the fully symmetric 
representation of Ospdf( 16) is 

(62,,0!161) = huspdf(Uspdf+ 1 4 )  (6) 

and the restriction Uspdf(16) = Ospdf( 16) on the Dynkin labels are [NI,,] -+ (U,pdT, 0, 0, 
0, 0, 0, 0, 0), where uspdf= 0, 1 ,  . . . , N,,,. 

3.3. The SU(4)@SU(4)  subalgebra 

It is more convenient to introduce a pseudo-spin construction of U(16) that better 
reflects the symmetry of this decomposition, usingj,  = ( i  = 1 , .  . . , 4 ) ,  and P ( L , ,  L z )  = 
(-  1) ( I / Z I i  L?+ L i 1 - L :  in (2).  The generators 9?Q,o and @c22' provide the realization of 
SU(4)@SU(4).  Generators of good rank and  parity can be defined by Red?;'= 
@'&")* 4:;'. The rank-zero operator is omitted since it is the same for both SU(4) 
subalgebras: @;:"= fitO1/4. (Of course it could be added to one of the algebras to 
produce SU(4)O U(4) . )  The quadratic Casimir operators of each SU(4) subalgebra 
are of mixed parity and  cannot appear alone in the Hamiltonian, which must be scalar, 
rotationally invariant and Hermitian. A suitable operator can be obtained by summing 
the two operators. The Young label branching rules for the decomposition Uspdf( 16) 2 

SU(4)OSU(4)  are given by [N,,,l+[nl, n,, n J @ [ n , ,  n 2 ,  n3] ,  were n , + n 2 + n 3 =  
NI,, - 4 ~ ,  n, 2 n2 2 n3 2 0 and  K = 0,1, . . . , [ N,,,/4]. Here the symbol [ Nl,,/4] denotes 
the largest integer less than or equal to the ratio. The expectation value of the operator 
is just the sum of two SU(4) expectation values in the above representations: 

* (  K , O )  

( t 2 , S U ( 4 ) @ S U ! 4 ) )  = &[3(n; '+ n: + - 2(n, n 2 +  n2n3 + n 3 n 1 )  +4(3n,  + n2 - n3)3. ( 7 )  

3.4. The O(10) spinor subalgebra 

This dynamical symmetry limit corresponds to the embedding of the spinor representa- 
tion (00001) of O(10) intoJhe fully symmetri? representation [ l ]  of Uspdr(16). The 45 
generators of O(10) are 9?L2,?', @,:', g::', and @bo;", using the realization in 
subsection 3.3. This algebra is a result of the structural zero of the 6- j  coefficient 

2 2 2  
{ 3  3 

2 2 2  
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The 25 generators of @:'y"' are of mixed parity and  rank, and a better representation 
of O(10) can be obtained from linear combinations of the @L2:', by inverting the 
definition of e:?): 

The quadratic Casimir expectation value is given by 

( ~ ~ , . o , I o ) )  = & [ ~ U : O - ~ ~ I O ( N I O ~ - ~ )  + Nk11 (10) 

where Dynkin label branching rules for fully symmetric representations of U( 16) into 
O( 10) are given by [NI,,] + ( vl0, 0, 0, 0, NI,, - 2v10), with U,,, = 0, 1, . . . , [ N,,,/2]. 

3.5. The SU(8)OSU(2) subalgebra 

This decomposition is easily obtained through the p2eudo-spin generators of (2), ?here 
j i  = 2 ,  1 5  2.  Specifically we denote the operators as 2:;" ( j ,  =,j, = :, j ,  = j  ,-:,, - - 9'o"o"' 
( j ,  = j ,  = j ,  = 4, j ,  = $), $?'$') ( j ,  = j ,  = j ,  = 4, j ,  = 5) and  $?$ ' ( j  1 - - J .  ' L  - j  - 3 - - 1 4  ' - -I). Of 
these 256 generators, SU(8) is generated by the 63 generators with only left indices 
while SU(2) is generated by three generators with right indices. The branching rules 
for UspdF( 16) 2 SU(8)OSU(2) in terms of Young labels for SU(8) and the spin for 
SU(2) are given by [N,,,]-.[N,,,/2+~ NIOI/2-i  0, 0, O , O ,  O]O[J], where Y =  N,,,/2, 
N,,,/2 - 1, . . . ,4 or 0. The quadratic Casimir operators have the expectation values 

4. pdf dynamical symmetry limits 

In this section we systematically detail the pdf dynamical symmetry limits [SI. These 
dynamical symmetries are the limits of the Uspd,-(16) model which d o  not decouple p 
and f bosons, and retain interactions between positive- and  negative-parity bosons for 
subalgebras with rank greater than 1. Octupole deformed systems can only be formed 
from generators that mix s-d and  p-f bosons, o r  equivalently by dynamical symmetry 
limits in which the generators 4 d o  not conserve the number of negative-parity bosons: 
[ 9, 2-1 # 0. We can consider the three classes of algebras introduced in I .  Class A is 
defined as the generators (and hence Casimir invariants) of the algebras that appear 
as subalgebras of U S d ( 6 ) 0  U,,-(lO) and necessarily separately conserve the number of 
negative- and positive-parity bosons. Hamiltonians constructed from the invariants of 
these subalgebras generate states of well defined parity, given by the expectation value 
of the number operator for negative-parity bosons, (A-). Nearly all algebras in table 
3, including the entire SUspdf(3) limit ( I Ia ) ,  fall into this class. Naturally parity doublets 
are not manifest in these limits since negative-parity states can be moved with respect 
to positive-parity states with the linear invariants of UJ6) and  U,,.( 10). The remaining 
algebras are the exceptions to this class. Class B are the algebras with Casimir operators 
that have good parity but d o  not commute with k, while class C are the algeb!as 
with Casimir operators that are of mixed parity and  hence d o  not commute with N - .  
There are only two algebras in table 3 of class C: SUpd,-(6) and supd,(3). The eight 
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Table 3. The pdf dynamical sqmmetry limits of LJ5p,,r(16). 

I 

class B algebras are SU(4)OSU(4) ,  Sp(4)OSp(4),  Ospdf(16), Opdf(15), O,pr(l l ) ,  0(10) ,  
Ospdf(4) and SUpdf(4). From this simple classification, it is clear that Hamiltonians that 
describe octupole deformation must include terms from class B or C. Only in this way 
can negative-parity bosons be mixed into the ground-state wavefunction. The generators 
are all summarized in tables 3-9. 

4.1. The SUP, (5) limit ( I )  

Aside from the O ( l 0 )  and SU,,,(6) subalgebras which are of classes B and C, all the 
subalgebras are of class A, and hence conserve separately the number of pf and sd 
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Table 3. (continued) 

I 

bosons. This limit contains quadrupole vibrations coupled to the octupole/dipole 
algebra Up45). Octupole deformation can only be described in this system by Hamil- 
tonians that include operators from O( 10) or SUpdf(6). The four maximal subalgebras 
0(10) ,  Updf(15), ud(5)@uspf(11) and Usd(6)@UPf(1O), as well as Ud(5)@upf(10) have 
already been detailed. The remaining subalgebra at this level is SUpdf(6), for which 
the generators are listed in tabJe 4. U;like the number oper$or, the 2calar operator 
$,') does not commute with F"' or M"'.  (The phases of 9"' and 9'4' are slightly 
different from those used in the O( 10) construction.) The embedding supd,-(15) 
SUpdF(6) for fully symmetric representations of SU(15) in Dynkin labels [ 131 is [ Npdl.] + 

[o, n,, 0, Npdf -2n]  - 3 n , ,  01, where the sum over all non-negative integers n ,  and nz  is 





5682 D Kusnezou 

v = 0, 1 ,  . , . , [ Npf/2]. The quadratic Casimir operators then have the expectation values 

(~2z,SU,C5))=~Nd(Nd'55) (13 )  

(14) (e2,,u:,, , , ,) =h[3Npf (Npf+  5 )  + 1 0 4 v  - Npr- 111.  

The Updf(5) subalgebra is obtained by combining generators of the same rank from 
the u d ( 5 )  and Upf(5) subalgebras. The relation between the construction of the gen- 
erators from ud(5)@ Upf(5) and SUpdf(6) are indicated in table 3 .  The representations 
of SUpdr(5) are obtained by coupling the Young tableaux of sud(5)  and 
SUpf(5) given above. The result in Young labels for sud(5)@SUpf(5) 2 SUpdf(5) 
is [Nd]@[n,,  n2, n 2 , 0 ] + [ n , + m , ,  n 2 + m 2 ,  n 2 ,  m,], where m , + m 2 + m 3 =  N d ,  

m ,  = max(0, N d - f l , ) ,  . . . , N d ,  m2 = 0, .  . . , min( Nd - m , ,  n, - n,) and O s  m3 = 
N d -  m ,  - m, s n,. The branching rules for the decomposition SUpdf(6) 2 SUpdf(5) in 
Dynkin labels are obtained by the rules [0, n ,  , 0, n 2 ,  01 + [ i, n, - i, n2 - j ,  j ] ,  where 
i = 0 ,1 ,  . . . , n, and j = 0, 1 ,  . . . , nz. For certain representations of O( 10) the branching 
rules O(10) 2 SUpdf(5) are straightforward to establish. For example, (0, 0, 0, 0, u l o )  + 
[0 ,  u l 0 -  n, - i, 0, n,], n, = 0, 1 , .  . . , u l 0 -  i and 
( u I o ,  0, 0, 0,O) --* [ u l 0 -  n,, 0, 0, n,], where n, = 0, 1 ,  . . . , u l 0 .  The quadratic Casimir 
operator in Young labels [ I , ,  1 2 ,  I , ,  I,] has the expectation value 

where and i = 0, 1 , .  . . , U,,,, 

( G . S L D d i i  5 1) = h[ 2 ( I: + I: + 1: + 13 - ( 4 12 + 1, I3 + I3 I,+ I ,  13 + 1114 + 12 14) 

+ 5(2I1 + 12 - /4)]. ( 1 5 )  

The 10 generators of Opdf(5) are identified as the odd rank tensors of SUpdf(5). 
Methods for computing the branching rules [ n, , n 2 ,  n,, n,] + ( I ,  , l,j for SUpdf(5) 2 

Opdf(5) can be found in [14]. The quadratic Casimir expectation value in Young labels 
is 

The final subalgebra in this chain is the Opdf(3) subalgebra, which is generated by 
F")  = ( l/m)LPdf. As before, the Casimir operator has the value ( e2) = fL( L +  1 ) .  
Branching rules ( I , ,  I,) + L for Opdf(5) 2 OPdf(3) can be obtained with the generating 
functions of [ 151. 

4.2. The SUSpdf(3) limit ( IIa)  

This dynamical symmetry is the rotational limit of the model and is shown in table 3 
and the generators in table 5 .  It consists only of class A algebras. As a consequence, 
there is no natural octupole deformation in this limit, in spite of the fact that SU(3) 
is conventionally associated with deformation. The Up,-( 10) 0 USd(6) subalgebra was 
already discussed. The next subalgebras are SU(3),  which are realized by the usual 
Elliott generators [ 161. The branching rules [ Npr] + ( A 2 ,  k 2 )  for Upf( 10) 3 SUpf(3) have 
been partially tabulated [ 5 ] ,  while [Nd]+ ( A , ,  k , )  for USd(6) 3 Susd(3) are well known 
[3]. The usual form of this expectation value is given in terms of the Elliott (or Dynkin) 
labels ( A ,  +) 

( ~ 2 , S ~ , 3 ) ) = ~ [ A 2 + k 2 + A k  +3(A + k ) l .  (17) 

The susd(3)@supf(3) symmetry can be broken by combining the generators of the 
two algebras into one suspdf(3) algebra. A phase ambiguity that arises because one 
can add or subtract the quadrupole generators can result in different physics. Although 
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Table 5. Generators and quadratic invariants of the SU,,,,(3I limit ( I la ) .  Refer to table 3 
for subalgebra embeddings. 

the energy levels are invariant with respect to the sign, the E2 transitions are not. The 
branching rule for ( A , ,  p , ) O ( h Z ,  p z ) +  ( A ,  1) are easily determined from their corre- 
sponding Young tableaux. 

We note that the su,d(3j@supf(3) symmetry can be broken a second way to 
O d ( 3 ) 0  OPf(3), generated by the operators f:" and Ly:, respectively. The branching 
rules for SU(3) 3 O(3) are well known [3] and will not be repeated. Each of these 
algebras has quadratic Casimir expectation value (&,,,) = f L ( L +  1). Finally, Opdf(3) 
generated by f:Jf is common to both supdf(3) and od(3 j@op~(3j ,  and the branching 
rules are the usual angular momentum couplings. 

4.3. The SUpdf(3) limit ( I lb)  

This limit, originally suggested as a limit that contains parity doublets [ 171, is shown 
in tables 3 and 6. It contains two class C subalgebras: SUpdf(6) and sUpdf(3). The 
SUpdf(3) algebra has the feature that the quadrupole operator is of mixed parity, and 
an E2 operator is contained in the SUpdf(6) algebra. This limit is a strong candidate 
for a description of octupole deformed systems. The subalgebras and branching rules 

Table 6. Generators and quadratic invariants of the SUpd,(31 limit ( I lb) .  Refer to table 3 
for subalgebra embeddings. 

Upd,(6) (See table 4 for generators and Casimir invariant) 
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for Updf(15) and SUPdr(6) have been detailed above. The quadratic Casimir has the 
expectation value 

(e2.,,:, , , , , ,3 i )  = + p + Ap + 3 ( A  + p 13. (18) 

The branching rules [o, p, 0, v, 01 -$ ( A ,  p )  for SUpdf(6) 2 SUpdf(3) for low-dimensional 
representations can be found in [18]. The Opdf(3) subalgebra is generated by i(pldr, with 
the same branching rules referred to in limit IIa. 

4.4.  The S U c p d f  (4)  - Orpdf(6)  limit ( I l l a )  

This limit corresponds to the coupling of the OSd(6) 'y-unstable' limit to the 0,,(6) 
limit of the negative parity bosons, as indicated in tables 3 and 7 .  The only algebra 
not of class A is SU(4)0SU(4) ,  which is of class B, which can be used to bring about 
octupole deformations in a y-unstable system. The subalgebras U S d ( 6 ) 0  U,,-( 10) and 
SU(4)OSU(4) were discussed above. The UPr(4) algebra is the algebra obtained with 
j ,  = j 2 = j 3 = j 4 = 1  in (2) and projecting onto the pf boson sybspace [6]. The 0,,(6) 
algebra is obtained by removing the rank-0 number operator Eho' = n̂ ,+ A, from Up,(4). 
(Projecting onto positive- rather than negative-parity bosons produces the Osd( 6) 
algebra.) In table 7 ,  the pairing operator is = d ' .  d a -  S'. si. The Dynkin label 
branching rules [ NPf] + [ n, , n 2 ,  n 3 ]  for representations of Upf( 10) = SUpf(4) - 0,,(6) 
are given by the rule [NPf]+[21, -612, Npf- 1,-413, 212], with the restrictions I ,  = Npr, 
Npf-2 , .  . . ,312 or 312+1, 12=0, 1, .  . . , [ N P f / 3 ]  and 13=0, 1 , .  . . , (Npf- l , ) /4 .  The rep- 
resentations are labelled in terms of the SU(4) labels since Young tableau methods 
for Kronecker products and subalgebra representations are well known. (The relation 
between the Young labels of SU(4) [ n , ,  n , ,  n 3 ]  and the usual Cartan SO(6) labels ( I , ,  
I,, 1 3 )  is n ,  = I ,  - I , ,  n ,  = I ,  - 1, and n3 = I ,  - l3 .) The branching rules [ N s d ]  + (?&, 0, 0) 

Table 7. Generators and quadratic invariants of the SU,,,,(4) - 0,pdf(6) limit ( I t l a ) .  Refer 
to table 3 for subalgebra embeddings. 
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for SUsd(6) 2 OSd(6) are given in the appendix. The quadratic Casimir invariants in 
the representations (u,d, 0, 0) and [ n , ,  n,, n,] have the expectation values 

(e2,,0,,,6))= $ u s d ( u s d + 4 )  (19 )  

( ~ , 2 , 0 , f i 6 , ) = ~ [ 3 ( n ~ + n ~ + n f ) - 2 ( n , n , + n 2 n 3 + n , n , ) + 4 ( 3 n , + n , - - n 1 ) ~ .  (20)  
The Ospdf(6) subalgebra appears as a subalgebra of SU(4)OSU(4)  and OSd(6)O 

OPf(6). The OSpdf(6) subalgebra of SU(4)OSU(4)  is obtained by keeping only the 
even-parity generators of SU(4)OSU(4) ,  defined by 3?b:J ( K  = 1 , 2 , 3 ) .  The same 
generators can be obtained by combining the generators of Osd(6) and O,,-(6). The 
quadratic Casimir operator and its expectation value in Young labels are 

(e2 ,0 , ,d f (6 ) )  = Q[j, (11 + 4) + 1 2 ( 1 2 +  2, + (21)  

The branching rules for Osd(6)OOp,(6) 2 0 s p d f ( 6 )  and SU(4)OSU(4)  = OsPd,-(6) are 
obtained by the usual Young tableau methods for SU(4). 

The odd-rank tensors form the subalgebra Opdf(5). Since we retain SU(4) labels 
for the algebras we denote 0 ( 6 ) ,  the branching rules for SU(4) - OSpdf(6) =I Opdf(5) in 
Young labels are [n,, n7, n 3 ] + ( I l ,  1 2 ) ,  where ( n , + n 2 - n , ) / 2 ~ I , s ( n , - n , + n , ) / 2 s  
l2  2 In, - n, - n31/2. The quadratic Casimir operator then has the expectation value 

(22)  (e2,0pdf( 5 1 )  = 8 1 1  (11 + 3) + 12 + 1 )I. 
The remainin subalgebra structure is just the usual Opdf(3) subalgebra, generated by 

tions can be found with the generating function of [15].  

I?" = (1 /&)Lpdp % I ,  The representations of OPdf(3) contained in the OPd,(5) representa- 

4.5. The SUpdf(4) limit ( I I Ib)  

This is another SU(4) limit (see tables 3 and 8), but unlike limit (IIIa),  the generators 
here do  not commute with the number operator for positive- or negative-parity bosons. 

Table 8. Generators and quadratic invariants of the SUpdf(4)  limit ( I I Ib) .  Refer to table 3 
for subalgebra embeddings. 

U,,,(6) (See table 4 for generators and Casimir invariant) 
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There are three class B algebras (Opdf( 15), supdf(4) and SU(4)@SU(4)) and one class 
C algebra (SUpdf(6)). This limit is a candidate for Hamiltonians describing octupole 
deformed systems. The existence of the supdf(4) subalgebra is a result of the same 
structural zero of the 6-5 coefficient (8) that allowed the closure of the O( 10) subalgebra. 
The expectation values in the fully symmetric representation of Opdf( 15) and the general 
representation of SU(4) are 

( t 2 , 0 p d c (  15 ) )  = k v p d f ( u p d f  + 13) 
(23) 

The restrictions on the Dynkin labels for Updf(l5) 3 Opdf(15) are [ N p d f ]  + (Updf, 
0, 0, 0, O , O ,  O , O ) ,  where vpdf=OA 1 , .  . . , T p d f .  The Opdf(5) subalgebra of supdf(4) is 
generated by odd-rank tensors L;df and T'3',  which is identical to the Opdf(5) algebra 
discussed in limit IIIa. 

(t,.5",*lt4J =" n:+ 4) - 2 ( n , n , +  n,n3+ n 3 n l )  +4(3n l  + n2 - %)I.  

4.6. The 0,,,,-(4) limit (IV) 

This limit, shown in tables 3 and 9, is composed of class B subalgebras (except for 
Opdf( 3)). Octupole deformed systems will arise naturally from any Hamiltonian con- 
structed in this limit. The maximal subalgebras Ospdf( 16), SU(4)OSU(4) and O( 10) 
have been detailed in section 3. Their common subalgebra is Sp(4)%,Sp(4), whose 
construction is most easily seen in terms of the odd-rank generators of SU(4)OSU(4).  
As with the construction of the SU(4)@SU(4) quadratic Casimir operator, only the 
contribution of good parity (the sum of the quadratic Casimir operators of each Sp(4) 
algebra) is of interest. The Young label branching rules for SU(4)OSU(4) 13 Sp(4)O 
Sp(4) are [n,, n,, n31@[nl ,  n 2 ,  n31+(I l ,  / 2 ) @ ( 1 3 ,  14), where 11, I ,=n ,+j - i ,  12, 1 4 =  
n2 - n3 - j  + i and i = 0, 1, . . . , min( n3 ,  n, - n2). For certain representations of O( lo), 
the branching rules to Sp(4)OSp(4) have a simple form ( N ,  0, 0, 0,O) + (0, I,)O(O, 1 2 ) ,  
where I ,  = K ,  K - 2 , .  . . , 1 or 0; l2 = N -  K ,  K = N, N -  1, .  . . , O ;  ( O , O ,  O,O, N ) + ( I l ,  12)0 
( I , ,  12), where I ,  = N, N - 2 , .  . . , 1 or 0, 12=0, 1, .  . . , [1,/2]; and for N a  1, 
( N ,  0, 0, 0, 1) + (1, IJ@(l ,  I * ) ,  where I, = N - 2i - I 2  - k, I ,  = 0, 1, . . . , N - 2i ,  k = 0 , l  and 
i = 0, 1,. . . , [ N / 2 ] .  The expectation value of this operator in these Young label rep- 
resentations is 

(24) (t2,SP(4)0SP(4J =h[h(4 +4)  + 1 2 ( l 2 + 2 ) +  MI3+4) + 14(14+2)1. 

Table 9. Generators and quadratic invariants of the 05pdf(4) limit ( IV) .  Refer to table 3 
for subalgebra embeddings. 
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The O(4) subalgebra is generated by the two rank-one tensors f”’ and bo), and 

(25) 

The branching rules for Sp(4)0Sp(4)  3 S U ( 2 ) 0 S U ( 2 )  - 0 ( 4 )  can be obtained from 
the O(5) - Sp(4) 3 SU(2) generating function of [ 151, or from extensive tables [ 18,191. 

has the Casimir operator expectation value 

( G . O t 4 ’ )  = a[l,ch + 2) + GI. 

4.7. The O,,,(5)0Od(5) limit (V) 

The OPf(5)0Od(5)  limit has been included in the pdf classification of dynamical 
symmetry limits as the algebras in this limit are closely related to most of the previous 
limits. The structure of this limit is displayed in table 3. The maximal subalgebras of 
Uspdf( 16) have been discussed in section 3. The subalgebras U,( 5)O Up,-( 10) and 
Opdf(15) have been discussed in limits I and IIIb, respectikely. The remaining two 
subalgebras at this level in table 3 are Osd(6)0OPf(10)  and O d ( 5 ) 0 0 s p f ( l l ) ,  whose 
general properties and branching rules are discussed in the appendix. Of the remaining 
subalgebras, only Od(5)@Opf( 10) falls into the classification of the appendix. The 
algebras Ud(5)@ Upf(5) and O,,(6)0Opf(6) are the same algebras discussed in limits 
I and IIIa. The algebra O d ( 5 ) 0 0 p f ( 6 )  is the same as in limit IIIa if we replace 0,,(6) 
by Od(5), and the ud(5) 2 Od(5) embedding falls into the class of the appendix. 

All these algebras can be broken to Od(5)0OPf(5) .  The od(5)  and Opf( 5) subalgebras 
of ud(5) and Upf(5) are obtained from the odd-rank tensors. Similarly, the Od(5) and 
OPf(5) subalgebras can be constructed-from the odd-rank tensors of OSd(6) and OPf(6). 
Explicitly, Od(5) is generated by [d‘d];’ and [ d ’d ] :3 ’ ,  and OPf(5) by 

fi;) = m(a[ pT7+fip’]:3’- [fy]:’). 
The quadratic Casimir operators are 

&2,0 , (5 )  = f [ d - d ] ‘ K ’ *  [ d - d ] I K ’  = ; [ i d (  i i d  + 3) - @: * p d ]  
K =odd 

-1 1 f i ( K l , f i ( K ’ - L  I (27) 
t 2 . O P f (  5 1 - 3 - 3(&f+ T 2 ) .  

K =odd 

Here @: = d A *  dA. The branching rules depend on the intermediate subalgebras. For 
Od(5) the rules are simple since it is a subalgebra of OSd(6) and ud(5), for which both 
cases are well known [3] and fall into the class discussed in the appendix; OPf(5) is a 
subalgebra of OPf(6), Opf(lO) and Upf(5). The O(6) - SU(4) 2 O ( 5 )  branching rules 
were discussed in limit IIIa. The Upf(5) 3 OPf(5) and Opf( 10) 2 OPf(5) branching rules 
can be found in standard tables [ 18, 191. The expectation values of these operators 
are then (in Young labels) 

(28) 

The Od(5)0OPf(5)  algebra can be broken to Opdf(5) by adding the generators. This 
produces an algebra which is identical to the Opdf(5) algebra of limits I, IIIa and IIIb. 
The representations obtained from the Kronecker products of the O( 5) representations 
can be found in [19]. This algebra can also be broken to O,(3)0Opf(3)  by keeping 
the rank-1 operators & ‘ I  and f$’. The OPdf(3) algebra is then obtained from f;Jf. 

( e2,.0,,51) = a U d (  Ud + 3) (6,oP,l5J = + % / I (  I ,  + 3) + I d 1 2  + 111. 
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5. Other dynamical symmetry limits 

In the previous sections we have studied the structure of most of the subalgebras that 
appear in the full  algebraic lattice of Ucpdf( 16). In order to complete the classification, 
we briefly discuss the remaining algebras that have not been previously detailed. A 
property common to all of these subalgebras is that they either couple pf bosons to 
sd bosons only at the level of SU(2), or they do not contain good boson angular 
momentum in any subalgebra with rank r >  1. These algebras, although not of direct 
physical importance, are included for completeness and shown in table 10. 

5.1. Limits including Sp(8)  and Sp(6 )  

The symplectic limits that contain Sp(8) and Sp(6) are not of central interest but are 
included for completeness. One of the common features of limits involving these 
algebras is that they do not contain physical boson angular momentum. 

The algebra Sp(8) appears only as a subalgebra of SU(8) in the SU(8)O 
SU(2) 2 Sp(8)OSU(2) limit of Uspdf( 16). The 36 generators of Sp(8) can be taken as 
the odd-rank generators Rk?) ( K  = odd), 3;;' and either $by' ( K  = 2,3)  or j(gKg0) 
( K  = 2,3),  since neither of these appear in the Casimir operator. The Sp(6) subalgebra 
of Sp(8) is generated by the ( K  =odd) ,  and the SU(2) subalgebra of Sp(6) is 
generated by 9;;'. The quadratic Casimir operators and their expectation values in 
Cartan labels are 

(29) 
where the branching rules for SU(8) 2 Sp(8) is [ n , ,  n,, O , O ,  O , O ,  O]+(n ,  - i, n 2 -  i, 
0 ,  O), where i = 0, 1 , .  . . , n z .  For the Sp(6) and SU(2) subalgebras 

= & i [ ~ l ( ~ l  + 8) + M&+ 6)1 

with the Young labels for the reduction Sp(8) 1 Sp(6)OSU(2)  being given by 
(1,,1,,0,O)+(I,-j-k,l,-i-k,0)0j,where2j=i+j,i=0,1 , . . . ,  l z , J = O , l  , . . . ,  I , -  
I ,  and k = 0,1, . . . , nz - i. 

The SU(S)OSU(2) symmetry can be broken a second way, via SU(8)O 
SU(2) 3 SU(6)OSU(2)OSU(2) .  The generators &g' and L@' form the SU(6)O 
SU(2) subalgebra of SU(8). (The SU(2) algebra is the same as that in the previous 
paragraph.) The SU(6) 3 Sp(6) subalgebra is generated by the odd-rank generators 

Qo ( K  = odd).  At this point the decomposition is identical to the discussion of Sp(6) 
in the previous paragraph, and 

(31) 
wheretheCartanlabelsforSU(8)=SU(6)OSU(2)are[n, ,  n 2 , O , 0 , 0 , 0 , 0 ] + [ n ~ - j - k ,  
n , - i - j , O , O , O ] O ~  with 2 J = i + k ,  j = O , l ,  . . . ,  n 2 ,  i = O , I ,  . . . ,  n r - j  and k =  
0 , 1 , .  . . , n ,  - n 2 .  For the SU(6) 2 Sp(6) decomposition, the Young label branching 
rules are [ n , ,  n,, 0, 0, O ] + ( n , - i ,  n z - i ,  0) ,  where i = O ,  1 , . . . ,  n,. 

A similar decomposition arises for Udf(l2) in the chain Udf( 12) 2 SU(6)O 
SU(2) 2 Sp(6)OSU(2)OSU(2) .  The SU(6)OSU(2) subalgebra is generated by &$"' 
( K  = o d d )  for SU(6) and 9;;' for SU(2). Then the SU(6) symmetry can be broken 
to Sp(6) in the same way discussed in the previous paragraph. The Odf(12) algebra 
also has Sp(6) 0 SU( 2 )  as a maximal subalgebra. 

* - 

&( KO1 

( G,.su,,i) = if[ i ( m i + 6) + mz( 111, + 4 ) i  
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Table IO. Generators and quadratic invariants of the SUpd,(15) 3 SU(5)OSU(3) ,  U,,,(9) 2 

SU(3)OSU(3)  and U p d ( 8 ) 2 S U ( 4 ) O S U ( 2 )  chains of U+,(16). Refer to Ref. 8 for sub- 
algebra embeddings. 
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Table 10. (continued) 

5.2. The supdf(15) 3 SU(3)OSU(5)  decomposition 

It is convenient to realize these generators in terms of the pseudo-spin representation 
in (2). Denoting by the generators obtained by substituting j, = j ,  = 2 and 
j , = j4=  1 in ( 2 ) ,  the separation into SU(5) and SU(3) generators is natural. (SU(5) is 
generated by the 24 generators with only left indices A$,''.) The number operator 
&E'= (l/d'E)fipdf can be added to either algebra. The odd-rank tensors form the 
0 ( 5 ) O S U ( 2 )  subalgebra of SU(5)OSU(3) ,  which is also a maximal subalgebra of 
Opdf( 15). The Young label branching rules for SUpdf( 15) 2 SU(5)OSU(3)  are [ NpdF] + 

[ n , ,  n2 ,  n3]@[n, - n 3 ,  n2-  n3], where n ,  5 n,  5 n3 3 0 and n ,  + n,+ n3 = N p d f .  The 
branching rules for SU(5) 2 0 ( 5 ) ,  O(5) 2 O(3) and SU(3) 2 O(3) were discussed in 
limits I and 11. The expectation values of the quadratic Casimir operators in Young 
labels are 

(&jc(s))  =&[2(  f l :  + f l ; +  f l : )  - (  f l 1  f l ,+  f l 1  f l 3 +  11,113) + S(2fll + f l , ) ]  

(32) 
( & , 0 ( 5 , )  = b[ / I (  1, + 3) + [2( 12 111 ( G , O W ) = i W + 1 )  

and switching to Elliott (Dynkin) labels A = n ,  - n2 and p = n,  - n, for SU(3): 

5.3. The su,pd(3), SUPd(3) and O,,d(4) subalgebras of UYpd(9) 

The U,,,(9) algebra alone is an interesting algebra since it couples dipole degrees of 
freedom to collective quadrupole excitations. Analogous to the two distinct SU(4) 
subalgebras of SU(4)OSU(4) ,  the SU(3)OSU(3)  limit of Uspd(9) admits two distinct 
SU(3) embeddings, along with an 0,,,(4) subalgebra. The most natural representation 
of Uspd(9) is provided by (2) with j ,  = j 2  = j 3  =j421,  and with the additional phase 

+ L 2 .  These generators are denoted Q:;''. Analogous to the SU(4)O 
SU(4) algebra, generators of good parity can be defined by sz? = d ~ ' + $ ~ ~ )  and 

from the sum of the two quadratic Casimir operators of each SU(3).  The Young 
branching rules for the decomposition of uspd(9) into SU(3)@SU(3) are given 
by [ N , , , 1 ~ [ n I , n , ] O [ n , , n , ] ,  where n , + n , = N , , , - 3 ~ ,  n ,Zn ,z=O and K = O ,  1, . . . ,  

( -  1 ) ' 1 / 2 1 (  L : + L ; )  

$ K '  - -i(r$dK,o'- 22:;)). A The even-parity quadratic Casimir operator is constructed 0.- - 
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[ N,,,/3]. The expectation value is 

(~2,SU~3)@SU(3)) = W + F 2 +  AP +3(A +PI1 (34) 

where A = n ,  - n, and p = n2. 
There are three subalgebras of SU(3)OSU(3) ,  which we call s u s p d ( 3 ) ,  supd(3) and 

OSpd(4). Suspd(3) and s u p d ( 3 )  correspond to the embedding of the (02)@(01) and 
( 1 1 ) 0 ( 0 0 )  representations into the (Ol)O(Ol) representation of S U ( 3 ) q S U ( 3 ) .  
su,pd(3) is formed by the quadrupole and angular momentum operators: &22:,; and 
(;)5?:L. This SU(3) algebra corresponds to the coupling of the two SU(3) algebras. 
The only subalgebra is generated by i r d .  

The OSpd(4) subalgebra is generated by the angular momentum operator 4:" and 
the dipole operator 2"'. Branching rules correspond to the usual SU(3) 2 SU(2) rules 
mentioned in limit 11. The subalgebra of OSpd(4) is generated by $y ' .  

The remaining subalgebra of SU(3)OSU(3)  is s u p d ( 3 ) ,  and is generated by the 
angular momentum operator dy' and the odd-parity quadrupole operator d?'. This 
algebra has the same Casimir operator expectation value (17) discussed in limit 11. 
This algebra closes on SU(3) as a result of the structural zero of the 6 - 5  coefficient 

{; ; ;} =o. (35)  

Further, this s u p d ( 3 )  subalgebra is also a maximal subalgebra of o p d ( 8 ) .  

5.4. The U,,(8) 3 U(4) 0 U(2) subalgebra 

The upd(8) algebra can be represented by the generators of (2) with j ,  = j 3 = i  and 
j ,  = j ,  = i, which we refer to as d!gc2'. As usual, the left and right indices generate 
SU(4) and SU(2).  The rank-0 operator &g'= (1 /2 f i )kpd  can be added to either 
algebra. The subalgebra structure of SU(4) is SU(4) 2 Sp(4) 3 SU(2), where Sp(4) is 
generated by the odd-rank tensors of SU(4). Branching rules to Sp(4) and SU(2) are 
identical to those in limit IV. The Cartan label branching rules for the reduction 

Npd/2, (Npd/2) - 1 , .  . . , $ or 0. The expectation values of the quadratic Casimir 
operators are 

s u , ~ ( 8 ) ~ s u ( 4 ) @ s u ( 2 )  iS [Npd]+[ (Npd/2 ) f i  (Npd/2)-y, o]@[J], where J =  

( = $[3(n: + n:) - 2n, n, +4(3n,  + n,)] 
(36) 

5.5. O(7) 3 Gz 3 O(3) 

The only exceptional subalgebra that appears in the UTPdf(16) lattice is the usual G, 
subalgebra of 0 , ( 7 ) ,  the f-boson algebra. The decomposition is Uf(7) 2 0 , ( 7 )  2 G, 2 

0,(3), and has been studied in detail [20]. 0, - (7)  is generated by the odd-rank tensors 
[ f i f ] ' K '  ( K  = 1 , 3 , 5 )  and G2 is generated by the tensors with K = 1 ,  5 .  The quadratic 
Casimir operator of G, is equal to 3 times the quadratic Casimir operator of Of(7), 
hence G, has no separate dynamics. Since the representations of 0 x 7 )  are fully 
symmetric (U, 0, O ) ,  the branching rules for Of(7) 3 G 2  are (U, 0, 0)-  (0, U). 
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6. Conclusions 

We have explicitly constructed all the dynamical symmetry limits of Uspdf( 16). The 
complex structure of Uspdf( 16) can be seen to reduce to seven pdf dynamical symmetry 
limits, which we studied in some detail. By introducing three classes of algebras, the 
pdf algebras can be classified in terms of which algebras provide descriptions of 
octupole deformation and so forth. The explicit construction of the generators provides 
the structure of transition operators in the dynamical symmetry limits. The framework 
is now available to construct dynamical symmetry Hamiltonians from the Casimir 
invariants. Although many branching rules have been established, the full state-labelling 
problem for the subalgebras of Uspdf( 16) has not been completely solved. In practice 
one can resort to existing computational schemes to obtain branching ratios. However, 
with the explicit constructions of the Casimir operators and generators, existing 
numerical methods [21] can be employed to solve the general dynamical symmetry 
and  broken symmetry U(  16) Hamiltonian. These calculations, together with electromag- 
netic transition strengths, are further steps that are necessary to establish the physical 
relevance of the dynamical symmetry limits. 
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Appendix 

More than one third of the subalgebras of Ucpdf( 16) are of two basic forms. Specifically, 
we ref'er to the subalgebras of the form U ( 1  (21, + 1 ) )  and their subalgebras of the form 
O(X (21, + 1) ) .  The representations are always fully symmetric, leading to simple 
expressions for general branching rules and Casimir operator expectation values. Since 
there are 14 groupings of s, p, d and f bosons (p,  d ,  f, sp, sd, sf, pd, pf, df, spd, spf, 
sdf, pdf, spd f ) ,  there are a total of 28 unitary and orthogonal subalgebras that fall 
into this class. These correspond to U ( n )  and  O ( n )  with n = 3 , .  . . , 13, 15, 16 and with 
two n = 8 values. 

A. 1. Unitary algebras 

Consider the set of boson creation and annihilation operators with spin { I , ,  1 2 ,  . . .}. 
The n ' ( n = 1 , ,  ( 2 l ,+ l ) )gene ra to r so f  U ( n )  a re [b , , i , , ] '& 'wi th  ,!,=ll,-/,l ,  . . . ,  1,+1, (all 
I , ,  1,). The quadratic Casimir operator for S U ( n )  is 

where fi = XI, r?,, = X I ,  -[ b,,6,,];:'. The branching rules are especially simple. The 
two cases that appear in the u,pdl(l6) subalgebra structure are U ( n , )  2 U( n ,  - 1) for 
which [ N I ,  0, .  . . , 0 ] +  [ N 2 ,  0 , .  . . , O ] ,  with N ,  =0,  1 , .  . . , N I ,  which refers to the 
decoupling of an  s boson, and  U ( n ,  + n,) 2 U ( n , ) O U ( n , )  for which [ N I ,  0 , .  . . , O ] +  
[N,,O, . . . ,  O ] O [ N , - N ? , O  , . . . ,  01 with N 2 = 0 , 1  , . . . ,  N , .  
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A.2. Orthogonal algebras 

For every algebra U(n) constructed from the n 2  bilinear products [ b / 1 6 / J $ ' ,  the OJn) 
subalgebra is given by the f n ( n  - 1) generators [b;,6f,]',L' ( L  = o d d )  and [bilb/?+ 

phase P must satisfy the relation 
(-1)p(L./,./2)b+ 12 6 1") M ,  where L = l , - L , .  . . , 1 1 + 1 2  for all 1, and I? with I ,  s12. Here the 

P ( L , ,  I , ,  I , )  = P ( L I ,  I , ,  l z ) + P ( L z ,  1 2 ,  l , ) + L ,  + LZ+L,+ 1 ( A . 2 )  

imposed by requiring the O ( n )  algebra to close. A convenient choice of P, which 
retains the form of the 0,d(6) algebra of the IBM-1 model and the 0 , , ( 4 )  algebra of 
the Vibron model [ 2 2 ] ,  is provided by 

if I ,  or l2 = 0 
if I ,  and I? > 0. (A.3) 

The quadratic Casimir operator of O( n )  where n = Z1,(21, + 1)  is 

1 
2 ( n  - 2 )  

-~ - [$(A+ n - 2 )  - P * r ; ]  ( A . 4 )  

where we use the usual definition of the pairing operators for bosons of spin 1 :  
P: = by. bi  and 9 = b;. gf. The choice of phase does not effect the expectation value 
of C 2 ,  but only the form of the pairing operator P. For example, the pairing operator 
for O(16) using P ( K , l , , 1 2 ) = K + l  is P - = s A ' s - + p - . p - + d - . d  +f.f, while for 
P ( K ,  I , ,  12 )  as in (A.3), e-= - s - . s - - p  ' p  + d - . d " - f - . f L .  Since the representations 
are fully symmetric, the expectation value of the quadratic Casimir operator for O( n )  
in the Cartan-Weyl basis is U ( U +  n - 2 ) / 2 ( n  - 2 ) ,  and we have 

(A.5) 

Equation (A.5) illustrates the relation between the pairing operator and boson 
seniority, given by ( N  - c ) / 2 .  The branching rules for U( n )  2 O( n )  given by 
[ N ,  0, .  . . , 01 + ( U ,  0,. . . , 0) with U = N, N - 2 ,  . . . , 1 or  0, and for O ( n ,  + n 2 )  3 O ( n , ) O  
O(n,)  given by ( u , , O  , . . . ,  O ) + ( v , - 2 k - u 2 , 0  , . . . ,  O ) @ ( u ? , O  , . . . ,  0) where U ? =  

0, 1, . . . , U ,  - 2 k  and k = 0, 1, . . . , [ u , / 2 ] .  

(6 r;)  = N ( N +  n - 2 )  - U (  U +  n - 2 ) .  
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